如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,交y轴于点C,过点C作CD⊥y轴交该抛物线于点D,且AB=2,CD=4. (1)该抛物线的对称轴为_,B点坐标为(_),CO=_; (2)若P为线段OC上的

问题描述:

如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,交y轴于点C,过点C作CD⊥y轴交该抛物线于点D,且AB=2,CD=4.

(1)该抛物线的对称轴为______,B点坐标为(______),CO=______;
(2)若P为线段OC上的一个动点,四边形PBQD是平行四边形,连接PQ.试探究:
①是否存在这样的点P,使得PQ2=PB2+PD2?若存在,求出此时点P的坐标;若不存在,请说明理由.
②当PQ长度最小时,求出此时点Q的坐标.

(1)∵点C在y轴上,CD=4,
∴抛物线的对称轴为直线x=

4
2
=2,
∵AB=2,
∴点B的横坐标为2+
2
2
=3,
∴点B的坐标为(3,0);
∵对称轴为直线x=-
b
2×1
=-2,
∴b=-4,
∵点B(3,0)在抛物线上,
∴9-4×3+c=0,
解得c=3,
∴CO=3;
(2)①不存在这样的点P,使得PQ2=PB2+PD2
理由如下:∵四边形PBQD是平行四边形,
∴PB=DQ,
若PQ2=PB2+PD2,则PQ2=DQ2+PD2
∴∠PDQ=90°,
∵四边形PBQD是平行四边,
∴PB∥DQ,
∴∠BPD=180°-90°=90°,
∴△PBO∽△DPC,
PO
CD
=
BO
PC

设OP=m,则
m
4
=
3
3−m

整理得,m2-3m+12=0,
△=(-3)2-4×1×12=-39<0,
∴这个方程没有实数根,
∴不存在这样的点P,使得PQ2=PB2+PD2
②连接BD交PQ于M,
∵四边形PBQD是平行四边形,
∴M为BD、PQ的中点,
∴PQ取得最小值时,MP必定取得最小值,
根据垂线段最短,当P为OC的中点时,PQ最小,
此时,MP为梯形OBDC的中位线,MP∥OB,MP⊥y轴,
MP=
1
2
×(3+4)=
7
2

∴PQ的最小值为2×
7
2
=7,
此时,点Q的坐标为(7,
3
2
).
故答案为:直线x=2;(3,0);3.