数列a1=-1,an+1=2an+4*{3}^{n-1}a1=-1,an+1=2an+4*{3}^{n-1},求an
问题描述:
数列a1=-1,an+1=2an+4*{3}^{n-1}
a1=-1,an+1=2an+4*{3}^{n-1},求an
答
a(n+1)=2an+4*3^(n-1)
a(n+1)/2^(n+1) - an/2^n = (3/2)^(n-1)
an/2^n -a1/2^1 = (3/2)^1+ (3/2)^2+..(3/2)^(n-1)
= 2(3/2)( (3/2)^(n-1) -1 )
= 2. (3/2)^n - 2
an/2^n = 2. (3/2)^n - 5/2
an = 2^n [2. (3/2)^n - 5/2 ]
答
a(n+1)=2an+4×3^(n-1)
设a(n+1)-m3^n=2[an-m3^(n-1)]
∴a(n+1)=2an+m3^(n-1)
∴m=4
∴a(n+1)-4×3^n=2[an-4×3^(n-1)]
∴﹛an-4×3^(n-1)﹜是等比数列
∴an-4×3^(n-1)=(a1-4×3º)×2^(n-1)=-5×2^(n-1)
an=4×3^(n-1)-5×2^(n-1)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!