在数列{an}中,a1=3,(n+1)an+1=nan,则a10等于选择A 10/3B 3/10C 1/10D 10

问题描述:

在数列{an}中,a1=3,(n+1)an+1=nan,则a10等于
选择
A 10/3
B 3/10
C 1/10
D 10

(n+1)a(n+1)=nan,a(n+1)=nan/(n+1)
a2=1*3/2=3/2
a3=2*(3/2)/3=1=3/3
a4=3*1/4=3/4
假设an=3/n
a(n+1)=n*(3/n)/(n+1)=3/(n+1)
所以a10=3/10,选B

由题意 :an+1/an=n/(n+1)
那么 a2/a1=1/2
a3/a2=2/3
a4/a3=3/4
........
a10/a9=9/10
把上面的式子相乘并约分:
a10/a1=1/10
即 a10/3=1/10
那么a10=3/10,选B
希望采纳。新春快乐!

(n+1)a(n+1)=nan
a(n+1)/an = n/(n+1)
(a2/a1)*(a3/a2)*.*(a10/a9)= a10/a1
=(1/2)*(2/3)*.*(9/10)= 1/10
a10 = a1*(1/10) =3/10

b