无穷级数 1/n 为何是发散的?无穷级数1/(n^2)和(1/n^3)又为何是收敛的?最好用图像作逻辑判断

问题描述:

无穷级数 1/n 为何是发散的?无穷级数1/(n^2)和(1/n^3)又为何是收敛的?最好用图像作逻辑判断
无穷级数 1/n 是因为其SIGMA值随n值增大而不断累加,而且无极限,所以为发散的吗?
那1/(n^2)和(1/n^3)不也一样吗?为何又是收敛的呢?

调和级数的证明比较抽象:
如果假设∑1/n收敛,记部份和为Sn,且设lim(n→∞)Sn=s
於是有lim(n→∞)S(2n)=s,有lim(n→∞)(S(2n)-Sn)=s-s=0
但是S(2n)-Sn=1/(n+1)+1/(n+2)+1/(n+n)>n/(n+n)=1/2,与lim(n→∞)(S(2n)-Sn)=s-s=0矛盾
所以调和级数∑1/n是发散的
又讨论P-级数∑1/(n^p)的敛散性.
(1)当p≤1时,因为n^p≤n,而调和级数∑1/n是发散的,根据比较审敛法知当01时,对於任意实数x,当n-1≤x1≤n,有1/n^p≤1/x^p
1/n^p=∫1/n^p dx((n-1)~n)
≤∫1/x^p dx((n-1)~n)
=1/(p-1)[1/(n-1)^(p-1)-1/n^(p-1)] (n=2,3,4.)
考虑级数∑[1/(n-1)^(p-1)-1/n^(p-1)],其部份和Sn=1-1/n^(p-1)
又有lim(n→∞)Sn=1,所以∑[1/(n-1)^(p-1)-1/n^(p-1)]收敛,根据比较审敛法,当p>1时,∑1/(n^p)收敛