f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)+f(x)小于等于0f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)-f(x)>0恒成立,若a>b>0,则必有A af(a)是xf'(x)-f(x)>0,可否重新给个答案?

问题描述:

f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)+f(x)小于等于0
f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)-f(x)>0恒成立,若a>b>0,则必有
A af(a)
是xf'(x)-f(x)>0,可否重新给个答案?

令F(x)=f(x)/x
F'(x)=[xf′(x)-f(x)]/x^2
因为xf′(x)-f(x)≥0
所以
F'(x)>=0

F(x)是增函数,即
当b>a>0时,F(b)>F(a)
所以
f(b)/b≥f(a)/a
从而
af(b)≥bf(a)

xf'(x)+f(x)小于等于0和xf'(x)-f(x)>0哪个对?
应该是xf'(x)+f(x)小于等于0吧
[xf(x)]'=x'*f(x)+x*f'(x)=f(x)+x*f'(x)≤0
所以xf(x)是减函数
a>b
所以af(a)0
所以f(x)+x*f'(x)>0
即[xf(x)]'>0
所以xf(x)是增函数
a>b
所以af(a)>bf(b)
选D