设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( ) A.f(x)g(x)>f(b)g(b) B.f(x)g(a)>f(a)g(x) C.f(x)g(
问题描述:
设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)-f(x)g′(x)>0,则当a<x<b时有( )
A. f(x)g(x)>f(b)g(b)
B. f(x)g(a)>f(a)g(x)
C. f(x)g(b)>f(b)g(x)
D. f(x)g(x)>f(a)g(a)
答
∵f′(x)g(x)-f(x)g′(x)>0
∴(
)′>0f(x) g(x)
∴函数
在R上为单调增函数f(x) g(x)
∵a<x<b
∴
<f(a) g(a)
<f(x) g(x)
f(b) g(b)
∵f(x),g(x)是定义在R上的恒大于零的可导函数
∴f(x)g(a)>f(a)g(x)
故选B