若函数f(x)=ax^3+bx+sinx+1,f(1)=-1,则f(-1)=
问题描述:
若函数f(x)=ax^3+bx+sinx+1,f(1)=-1,则f(-1)=
RT
答
f(1)=a+b+sin1+1=-1
a+b+sin1=-2
f(-1)
=-a-b+sin(-1)+1
=-a-b-sin1+1
=-(a+b+sin1)+1
=2+1
=3