设数列{a2n-1}是首项为1的等差数列,数列{a2n}是首项为2的等比数列,数列{an}的前n项和为Sn(n∈N*), 已知S3=a4,a3+a5=a4+2. (Ⅰ)求数列{an}的通项公式; (Ⅱ)求S2n.

问题描述:

设数列{a2n-1}是首项为1的等差数列,数列{a2n}是首项为2的等比数列,数列{an}的前n项和为Sn(n∈N*),
已知S3=a4,a3+a5=a4+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求S2n

(Ⅰ)设等差数列的公差为d,等比数列的公比为q,
则a1=1,a2=2,a3=1+d,a4=2q,a5=1+2d,
∴4+d=2q,(1+d)+(1+2d)=2+2q,解得d=2,q=3,
则数列{an}的通项公式an=

n,  n=2k−1
2•3
n
2
−1
,n=2k,k∈N

(Ⅱ)∵an=
n,  n=2k−1
2•3
n
2
−1
,n=2k,k∈N

∴S2n=
(1+2n−1)n
2
+
2(1−3n)
1−3
=n2-1+3n