已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an}为等差数列;

问题描述:

已知数列{an}满足a1=1,an-a(n+1)=ana(n+1),数列{an}的前n项和为Sn.(1)求证:{1/an}为等差数列;
(2)设Tn=S2n-Sn,求证T(n+1)>Tn

an-a(n+1)=ana(n+1) 【两边同除以ana(n+1)】
得:
1/[a(n+1)]-1/[a(n)]=1
即:
数列{1/(an)}是以1/a1=1为首项、以d=1为公差的等差数列.
则:
1/[a(n)]=n
a(n)=1/n第二问呢。第一问我会。第二问那个求和。1/n不会啊。an-a(n+1)=ana(n+1) 【两边同除以ana(n+1)】得:1/[a(n+1)]-1/[a(n)]=1即:数列{1/(an)}是以1/a1=1为首项、以d=1为公差的等差数列。则:1/[a(n)]=na(n)=1/n Tn=S(2n)-S(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+…+[1/(n+n)]则:T(n)-T(n+1)={[1/(n+1)]+[1/(n+2)]+…+[1/(n+1)]}-{[1/(n+2)]+[1/(n+3)]+…+[1/(n+1)+(n+1)]}=[1/(n+1)]-1/[(n+1)+n]-1/[(n+1)+(n+1)]=-1/[(n+1)(2n+1)]Tn