如图,函数y=kx(x>0,k>0)的图象经过A(1,4),B(m,n),其中m>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,DC,CB,AC与BD相交于点E.(1)若△ABD的面积为4,求点B的坐标;(2)四边形ABCD能否成为平行四边形?若能,求点B的坐标,若不能说明理由;(3)当AC=BD时,求证:四边形ABCD是等腰梯形.

问题描述:

如图,函数y=

k
x
(x>0,k>0)的图象经过A(1,4),B(m,n),其中m>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,DC,CB,AC与BD相交于点E.

(1)若△ABD的面积为4,求点B的坐标;
(2)四边形ABCD能否成为平行四边形?若能,求点B的坐标,若不能说明理由;
(3)当AC=BD时,求证:四边形ABCD是等腰梯形.

(1)将A(1,4)代入反比例解析式得:4=k1,即k=4,∴反比例解析式为y=4x,将B(m,n)代入得:mn=4,∴BD=m,AE=AC-EC=4-n,∵S△ABD=12AE•BD=12m(4-n)=4,∴2m-12mn=2m-2=4,解得:m=3,∴n=43,则B(3,43)...
答案解析:(1)将A的坐标代入反比例解析式中求出k的值,确定出反比例解析式,将B的坐标代入反比例解析式中,求出mn的值,三角形ABD的面积由BD为底边,AE为高,利用三角形面积公式来求,由B的坐标得到BD=m,由AC-EC表示出AE,由已知的面积,利用面积公式列出关系式,将mn的值代入,求出m的值,进而确定出n的值,即可得到B的坐标;
(2)假设四边形ABCD为平行四边形,利用平行四边形的性质得到BD与AC互相平分,得到E为AC的中点,E为BD的中点,由A的坐标求出E的坐标,进而确定出B的坐标,将B坐标代入反比例解析式检验,B在反比例图象上,故假设正确,四边形ABCD能为平行四边形;
(3)由由AC=BD,得到A的纵坐标与B的横坐标相等,确定出B的横坐标,将B横坐标代入反比例解析式中求出B的纵坐标,得到B的坐标,进而确定出E的坐标,得到DE=CE=1,由AC=BD,利用等式的性质得到AE=BE,进而得到两对对应边成比例,且由对顶角相等得到夹角相等,利用两边对应成比例且夹角相等的两三角形相似,得到三角形DEC与三角形AEB相似,由相似三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行得到CD与AB平行,而在直角三角形ADE与直角三角形BEC中,DE=EC,AE=BE,利用勾股定理得到AD=BC,且AD与BC不平行,可得出四边形ABCD为等腰梯形.
考试点:反比例函数综合题.


知识点:此题属于反比例综合题,涉及的知识有:相似三角形的判定与性质,坐标与图形性质,平行四边形的判定与性质,勾股定理,以及等腰梯形的判定,熟练掌握判定与性质是解本题的关键.