如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为______.

问题描述:

如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为______.

连接AC,
在菱形ABCD中,AB=CB,
∵∠B=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°,
∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,

∠BAE=∠CAF
AB=AC
∠B=∠ACF

∴△ABE≌△ACF(ASA),
∴AE=AF,
又∠EAF=∠D=60°,则△AEF是等边三角形,
∴∠AFE=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
答案解析:首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,得∠AEF=60°,最后求出∠CEF的度数.
考试点:菱形的性质.
知识点:此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.