设函数Z=f(x,y)=xy/x2+y2,则下列个结论中不正确的是()A f(1,y/x)=xy/x2+y2 B f(1,x/y)=xy/x2+y2 C f(1/x,1/y)=xy/x2+y2 D f(x+y,x-y)=xy/x2+y2为什么选D,求详解

问题描述:

设函数Z=f(x,y)=xy/x2+y2,则下列个结论中不正确的是()
A f(1,y/x)=xy/x2+y2 B f(1,x/y)=xy/x2+y2 C f(1/x,1/y)=xy/x2+y2 D f(x+y,x-y)=xy/x2+y2为什么选D,求详解

a...b..两选项相同 不选 cd中选一 特殊值法 x=2 y=1代入cd就发现c对d错

Z=f(x,y)=xy/x2+y2
Z=f(a,b)=ab/a2+b2
令a=x+y,b=x-y
f(x+y,x-y)=(x+y)(x-y)/(x+y)2+(x-y)2

A,把1,y/x代入,得f(1,y/x) = (y/x) / (1 + y^2/x^2) = xy / (x^2 + y^2)B.和A一样的方式,只是以x/y代y/xC.把1/x,1/y代入,f(1/x,1/y) = (1/xy) / ( 1/x^2 + 1/y^2) = xy / (x^2 + y^2)所以A,B,C都成立.D.f(x+y,x-y)= ...