x2/4+y2/2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点. 当直线AM的斜率为x2/4+y2/2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.当直线AM的斜率为1时,求点M的坐标,并求直线MN与x轴的交点坐标
问题描述:
x2/4+y2/2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点. 当直线AM的斜率为
x2/4+y2/2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
当直线AM的斜率为1时,求点M的坐标,并求直线MN与x轴的交点坐标
答
由已知,可知A座标已知,又知AM斜率,可写出AM方程,联立AM方程和椭圆方程,可求出M点坐标.用韦达可快速求出M坐标.
同理,由于AM和AN垂直,可知AN斜率-1,写出AN方程,把它和椭圆方程联立,解N坐标,
M,N坐标都求出来了,MN方程就知道了,与x轴交点易求之.