已知椭圆 x24+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.(1)当直线AM的斜率为1时,求点M的坐标;(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.
问题描述:
已知椭圆
+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.x2 4
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.
答
(1)直线AM的斜率为1时,直线AM:y=x+2,(1分)代入椭圆方程并化简得:5x2+16x+12=0,(2分)解之得x1=-2,x2=-65,∴M(-65,45).(4分)(2)设直线AM的斜率为k,则AM:y=k(x+2),则y=k(x+2)x24+y2=1化简得:...
答案解析:(1)根据直线AM的斜率为1时,得出直线AM:y=x+2,代入椭圆方程并化简得:5x2+16x+12=0,解得点M的坐标即可;(2)对于是否过x轴上的一定点问题,可先假设存在,设直线AM的斜率为k,则AM:y=k(x+2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系即可求得P点的坐标,从而解决问题.
考试点:直线与圆锥曲线的综合问题.
知识点:本题考查直接法求轨迹方程、直线与抛物线的位置关系、直线过定点问题.考查推理能力和运算能力.