高二数学选修2-1圆锥曲线的应用在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点为M(√2,1) (1)求椭圆C的方程(2)设椭圆C的一个顶点为B(0,-b),直线BF2交椭圆C于另一点N,求▲F1BN的面积.
问题描述:
高二数学选修2-1圆锥曲线的应用
在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点为M(√2,1) (1)求椭圆C的方程(2)设椭圆C的一个顶点为B(0,-b),直线BF2交椭圆C于另一点N,求▲F1BN的面积.
答
c2=2 b2/a=1 b2=aa2-2=a a=2或a=-1(舍)b2=2椭圆C的方程(x2/4)+(y2/2)=1 (2)直线BF2方程是y=x-√2与(x2/4)+(y2/2)=1 联立求解得N(4√2/3,√2/3)F1BN的面积=(F1F2)(√2/3+√2/)/2=(2√2)(...