已知正项数列{an},满足a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1n属于正数)1、求an通项公式 2、设bn=1/an,求数列bn前n项和

问题描述:

已知正项数列{an},满足a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1n属于正数)1、求an通项公式 2、设bn=1/an,求数列bn前n项和

(1)(2n-1)an+2=(2n+1)an-1+8n^2
即 2n*an - an +2 =2n*an + an-1+8n^2
所以 an = (3-8n^2)/2 (n>1n属于正数)
(2) bn=1/an = 2 / (3-8n^2)答案不一样了啊(2n-1) a【n】+2=(2n+1)a【n-1】+8n^2括号内是下标无语。等下(1)(2n-1) a【n】+2=(2n+1)a【n-1】+8n^2 a【n】=(2n+1)/(2n-1)*a【n-1】+(8n^2-2)/(2n-1)两边同时除以2n+1得 即an/(2n+1)=an-1/(2n-1)+2 所以数列an/(2n+1)是等差数列首项a1/(2+1)=1,公差为2 所以an/(2n+1)= 1 + 2(n-1)=2n-1所以an通项公式是an=(2n+1)(2n-1)=4n^2-1(2)bn=1/an=1/((2n+1)(2n-1))=1/2(1/(2n-1)-1/(2n+1))b1=1/2(1-1/3)b2=1/2(1/3-1/5)……bn=1/2(1/(2n-1)-1/(2n+1))所以数列bn前n项和S=1/2(1-1/(2n+1))=n/(2n+1)