将正△ABC分割成n2(n≥2,n∈N)个全等的小正三 角形(图1,图2分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个

问题描述:

将正△ABC分割成n2(n≥2,n∈N)个全等的小正三 角形(图1,图2分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=______…,f(n)=______.

由题意可得,(各点放的数用该点的坐标表示)当n=2时,根据等差数列的性质可得,A+B=2D,A+C=2E,B+C=2F,且A+B+C=12(D+E+F)=2(A+B+C)=2,D+E+F=1∴f(2)=2=3×46当n=3时,根据等差数列的性质可得,A+B=D+E,A+...