如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F. (1)求证:BD=CE; (2)求锐角∠BFC的度数.
问题描述:
如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.
(1)求证:BD=CE;
(2)求锐角∠BFC的度数.
答
(1)证明:∵△ABC和△ADE均为等边三角形,
∴AE=AD、AB=AC,
又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,
在△EAC和△DAB中,
,
AE=AD ∠DAB=∠EAC AB=AC
∴△EAC≌△DAB,
即可得出BD=CE.
(2)由(1)△EAC≌△DAB,可得∠ECA=∠DBA,
又∵∠DBA+∠DBC=60°,
在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,
则∠BFC=180°-∠ACB-(∠ECA+∠DBC)=180°-60°-60°=60°.