已知正项数列{an}的前n项和为Sn,且对任意的正整数n,满足2Sn=an+1,则数列{an}的通项公式an=_.

问题描述:

已知正项数列{an}的前n项和为Sn,且对任意的正整数n,满足2

Sn
=an+1,则数列{an}的通项公式an=______.

∵2Sn=an+1,∴an=2Sn-1,∵2Sn=an+1,∴4Sn=(an+1)2那么4Sn-1=(an-1+1)2两式相减得4an=an2+2an-an-12-2an-1即2(an+an-1)=an2-an-12=(an+an-1)(an-an-1)∵正项数列{an}中an>0,∴an-an-1=2an=2S1-1=2a1-1...