如图,梯形ABCD中,AD∥BC,AC,BD相交于点O,过O作BC的平行线分别交AB,CD于点E,F.(1)求证:OE=OF;(2)若AD=3,BC=4,求EF的长.

问题描述:

如图,梯形ABCD中,AD∥BC,AC,BD相交于点O,过O作BC的平行线分别交AB,CD于点E,F.

(1)求证:OE=OF;
(2)若AD=3,BC=4,求EF的长.

(1)证明:∵AD∥BC,
∴△AOE∽△ABC,△DOF∽△DBC,

OE
BC
=
AO
AC
OF
BC
=
DF
DC

又∵由AD∥BC得,△ACD∽△OCF,
AO
AC
=
DF
DC

OE
BC
=
OF
BC

∴OE=OF;
(2)∵AD∥BC,
∴△AOD∽△BOC,
AO
OC
=
AD
BC
=
3
4

AO
AC
=
3
3+4
=
3
7

∵BC=4,
OE
4
=
AO
AC
=
3
7

解得OE=
12
7

∴EF=OE+OF=
12
7
+
12
7
=
24
7

答案解析:(1)由△AOE和△ABC相似可得
OE
BC
=
AO
AC
,由△DOF和△DBC相似可得
OF
BC
=
DF
DC
,由△ACD和△OCF相似可得
AO
AC
=
DF
DC
,从而得到
OE
BC
=
OF
BC
,即可得证;
(2)根据△AOD和△BOC相似求出
AO
OC
,再求出
AO
AC
,然后求出OE,根据EF=OE+OF即可.
考试点:相似三角形的判定与性质;梯形.
知识点:本题考查了相似三角形的判定与性质,根据平行得到三角形相似是解题的关键,也是本题考查的重点.