在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每件盈利40元.为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存,经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?

问题描述:

在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每件盈利40元.为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存,经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?

设每套降价x元,
由题意得:(40-x)(20+2x)=1200
即2x2-60x+400=0,
∴x2-30x+200=0,
∴(x-10)(x-20)=0,
解之得:x=10或x=20
为了减少库存,所以x=20.
每套应降价20元.
答案解析:设每套降价x元,那么就多卖出2x套,根据扩大销售量,增加盈利,尽快减少库存,每天在销售吉祥物上盈利1200元,可列方程求解.
考试点:一元二次方程的应用.


知识点:本题考查理解题意的能力,关键是看到降价和销售量的关系,然后根据利润可列方程求解.