等差数列{An}中,a1 a3 a4 成等比数列,公比为-------.最好有详解
问题描述:
等差数列{An}中,a1 a3 a4 成等比数列,公比为-------.最好有详解
答
答案 公比为2
详设等差数列公差为D 则A3=A1+2D,A4=A1+3D
又因为a1 a3 a4 成等比数列,故A3的平方等于A1*A4 解得A1=-4D,A3=-2D A4=-D 故公比为2
答
a3=a1+2d
a4=a1+3d
a3方=a1×a4
a1方+4a1×d+4d方=a1方+3a1×d
4a1×d+4d方=3a1×d
4d方=-a1×d
当d=0时,公比为1
当d≠0时,4d=-a1
代入,得:
a1=-4d
a3=a1+2d=-4d+2d=-2d
a4=a1+3d=-4d+3d=-d
∴公比为1/2
综上所述,公比为1或1/2
答
因为 { An }是等差数列所以 a3 = a1 + 2d ; a4 = a1 + 3d因为a1 a3 a4 成等比数列所以 (a3)² = a1×a4所以 (a1 + 2d)² = a1(a1 + 3d) a1² + 4a1d + 4d² = a1² + 3a1d a1d + 4d...
答
(a3)^2=a1*a4
(a1+2d)^2=a1*(a1+3d)
a1=-4d或d=0
a3=-2d或a1
公比q=0.5 或1