数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.(1)设cn=an-1,求证:数列{cn}是等比数列;(2)求数列{bn}的通项公式.

问题描述:

数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n.
(1)设cn=an-1,求证:数列{cn}是等比数列;
(2)求数列{bn}的通项公式.

(1)证明:∵a1=S1,an+Sn=n,∴a1+S1=1,得a1=

1
2

又an+1+Sn+1=n+1,两式相减得2(an+1-1)=an-1,即
an+1−1
an−1
=
1
2

也即
cn+1
cn
=
1
2
,故数列{cn}是等比数列.
(2)∵c1=a1-1=-
1
2

∴cn=-
1
2n
,an=cn+1=1-
1
2n
,an-1=1-
1
2n−1

故当n≥2时,bn=an-an-1=
1
2n−1
-
1
2n
=
1
2n

又b1=a1=
1
2
,即bn=
1
2n
(n∈N*).
答案解析:(1)先根据an+Sn=n求出a1的值,再由an+1+Sn+1=n+1和an+Sn=n两式相减可得到2(an+1-1)=an-1,即
an+1−1
an−1
=
1
2
,再由cn=an-1可得到数列{cn}是等比数列,得证.
(2)先根据数列{cn}是等比数列求出数列{cn}的通项公式,进而可得到数列{an}的通项公式,然后由bn=an-an-1可得到bn的通项公式.
考试点:等比关系的确定;数列递推式.
知识点:本题主要考查等比数列的证明和求数列的通项公式,考查基础知识的综合运用.