求S1=1+2+3+……+n的公式
问题描述:
求S1=1+2+3+……+n的公式
答
an=n(n+1)/2
Sn=1+3+……(n^2)/2+n/2
S1=1/2+4/2……(n^2)/2
=(n(n+1)(2n+1)/6)/2=n(n+1)(2n+1)/18
S2=1/2+2/2……n/2=n(n+1)/4
Sn==n(n+1)(2n+1)/18+n(n+1)/4
=n(n+1)(4n+2+9)/36
=n(n+1)(4n+11)/36