如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.(1)求证:EF∥平面A1BC1;(2)求证:平面D1DBB1⊥平面A1BC1.

问题描述:

如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.

(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

(1)连接AC,则AC∥A1C1,而E,F分别是AB,BC的中点,∴EF∥AC,则EF∥A1C1,故EF∥平面A1BC1(7分)(2)因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,又A1C1⊥B1D1,则A1C1⊥平面D1DBB1(12分)又A1C1⊂平面A1BC1,所...
答案解析:(1)连接AC,则AC∥A1C1,E,F分别是AB,BC的中点,可得EF∥AC,然后再利用直线与平面平行的判定定理进行证明,即可解决问题;
(2)因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,又A1C1⊥B1D1,然后利用平面与平面垂直的判定定理进行证明;
考试点:直线与平面平行的判定;平面与平面垂直的判定.


知识点:此题考查直线与平面平行的判断及平面与平面垂直的判断,此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,同学们要课下要多练习.