已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.
问题描述:
已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.
答
证明:在AE上截取AM=AD,连接CM,∵AC平分∠BAD,∴∠1=∠2,在△AMC和△ADC中AC=AC∠1=∠2AD=AM,∴△AMC≌△ADC(SAS),∴∠3=∠D,∵∠B+∠D=180°,∠3+∠4=180°,∴∠4=∠B,∴CM=CB,∵CE⊥AB,∴ME=EB(...