已知:如图,在四边形ABCD中,AD∥BC,AB=BC+AD,AE平分∠BAD交CD于点E. 求证:BE⊥AE.
问题描述:
已知:如图,在四边形ABCD中,AD∥BC,AB=BC+AD,AE平分∠BAD交CD于点E.
求证:BE⊥AE.
答
延长AE、BC交于点F,
∵AD∥BC,
∴∠DAE=∠CFE,
∵AE平分∠BAD,
∴∠DAE=∠BAF,
∴∠BAF=∠CFE,
∴AB=BF,
∵AB=BC+AD,BF=BC+CF,
∴AD=CF,
∴△ADE≌△CFE,
∴AE=FE,
∴BE⊥AE.