已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.

问题描述:

已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.

证明:在AE上截取AM=AD,连接CM,
∵AC平分∠BAD,
∴∠1=∠2,
在△AMC和△ADC中

AC=AC
∠1=∠2
AD=AM

∴△AMC≌△ADC(SAS),
∴∠3=∠D,
∵∠B+∠D=180°,∠3+∠4=180°,
∴∠4=∠B,
∴CM=CB,
∵CE⊥AB,
∴ME=EB(等腰三角形底边上的高线与底边上的中线重合),
∵AE=AM+ME,
∴AE=AD+BE.