如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)若OE:EA=1:2,PA=6,求⊙O的半径;(3)在(2)的条件下,求sin∠PCA的值.

问题描述:

如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,∠POC=∠PCE.

(1)求证:PC是⊙O的切线;
(2)若OE:EA=1:2,PA=6,求⊙O的半径;
(3)在(2)的条件下,求sin∠PCA的值.


答案解析:(1)要证PC是⊙O的切线,只要证∠PCO=90°即可;
(2)相似三角形的性质及勾股定理求出⊙O的半径;
(3)求出CE的长,BE的长,BC的长,切线的性质知∠PCA=∠B,求出Sin∠B,即为所求.
考试点:切线的判定.
知识点:本题综合考查了相似三角形的性质,勾股定理及切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.