若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是( )A. (−3,3)B. [−3,3]C. (-2,2)D. [-2,2]
问题描述:
若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是( )
A. (−
,
3
)
3
B. [−
,
3
]
3
C. (-2,2)
D. [-2,2]
答
知识点:本题考查直线与双曲线的性质和应用,解题时要认真审题,仔细解答,注意根的判别式的合理运用.
把y=k(x-2)+b代入x2-y2=1得x2-[k(x-2)+b]2=1,
△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]
=4(1-k2)+4(b-2k)2
=4[3k2-4bk+b2+1]=4[3(k2−
k+4b 3
)−4b2
9
+1]b2 3
不论k取何值,△≥0,则1-
b2≥01 3
∴
≤1,b2 3
∴b2≤3,则−
≤b≤
3
3
故选B
答案解析:把y=k(x-2)+b代入x2-y2=1得(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,不论k取何值,△≥0恒成立可求出b的取值范围.
考试点:直线与圆锥曲线的关系.
知识点:本题考查直线与双曲线的性质和应用,解题时要认真审题,仔细解答,注意根的判别式的合理运用.