若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是(  )A. (−3,3)B. [−3,3]C. (-2,2)D. [-2,2]

问题描述:

若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是(  )
A. (−

3
3
)
B. [−
3
3
]

C. (-2,2)
D. [-2,2]

把y=k(x-2)+b代入x2-y2=1得x2-[k(x-2)+b]2=1,
△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]
=4(1-k2)+4(b-2k)2
=4[3k2-4bk+b2+1]=4[3(k2

4b
3
k+
4b2
9
b2
3
+1]
不论k取何值,△≥0,则1-
1
3
b2≥0
b2
3
≤1,
∴b2≤3,则
3
≤b≤
3

故选B
答案解析:把y=k(x-2)+b代入x2-y2=1得(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,不论k取何值,△≥0恒成立可求出b的取值范围.
考试点:直线与圆锥曲线的关系.

知识点:本题考查直线与双曲线的性质和应用,解题时要认真审题,仔细解答,注意根的判别式的合理运用.