如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由.

问题描述:

如图,在菱形ABCD中,∠B=60°,点E、F分别在AB、AD上,且BE=AF,试判断△CEF的形状,并说明理由.

连接AC,∵在菱形ABCD中,∠B=60°,∴AC=AB=BC=CD=AD,∵BE=AF,∴AE=DF,∵∠B=60°,AC是对角线,∴∠BAC=60°,∴∠BAC=∠D=60°,在△ACE与△DCF中,∵AC=DC∠BAC=∠DAE=DF,∴△ACE≌△DCF,∴EC=FC.∠ACE=∠...
答案解析:菱形的四边相等,对角线平分每一组对角,因为∠B=60°,连接AC,AC和菱形的边长相等,可证明△ACE≌△CDF,可得到一个角为60°的等腰三角形从而可证明是等边三角形.
考试点:菱形的性质;等边三角形的判定.
知识点:本题考查了菱形的性质,四边相等,对角线平分每一组对角,以及等边三角形的判定,有一个角是60°的等腰三角形是等边三角形.