如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M.(1)请判断△DMF的形状,并说明理由.(2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围.
问题描述:
如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M.
(1)请判断△DMF的形状,并说明理由.
(2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围.
答
知识点:此题主要考查等腰三角形的判定,菱形的性质,以及三角形的面积公式.
(1)△DMF是等腰三角形.理由如下:(2分)∵四边形ABCD是菱形∴AB=AD,∵∠A=60°,∴∠ABD=60°,∵EF⊥AB,∴∠F=30°,∠DMF=∠EMB=30°,∴∠F=∠DMF,∴DM=DF,∴△DMF是等腰三角形.(2)EB=x,则AE=4-x,由...
答案解析:(1)△DMF是等腰三角形.主要利用菱形ABCD中,∠A=60这个条件得到∠E、∠DMF的度数来判断;
(2)不能直接表示△DMF的面积,采用面积分割法,用△AEF、△BEM来表示它.
考试点:等腰三角形的判定;根据实际问题列二次函数关系式.
知识点:此题主要考查等腰三角形的判定,菱形的性质,以及三角形的面积公式.