已知:tanθ=b/a,求证:acos2θ+bsin2θ=a.

问题描述:

已知:tanθ=

b
a
,求证:acos2θ+bsin2θ=a.

证明:∵左边=a

1−tan2θ
1+tan2θ
+b
2tanθ
1+tan2θ

=a
1−(
b
a
)
2
1+(
b
a
)
2
+b
2b
a
1+(
b
a
)
2

=
a(a2b2)+b(2ab)
a2+b2

=
a[(a2b2)+2b2]
a2+b2

=
a(a2+b2)
a2+b2
=a
=右边
∴acos2θ+bsin2θ=a.