已知:tanθ=b/a,求证:acos2θ+bsin2θ=a.
问题描述:
已知:tanθ=
,求证:acos2θ+bsin2θ=a. b a
答
证明:∵左边=a
+b1−tan2θ 1+tan2θ
2tanθ 1+tan2θ
=a
+b1−(
)2
b a 1+(
)2
b a
2b a 1+(
)2
b a
=
a(a2−b2)+b(2ab)
a2+b2
=
a[(a2−b2)+2b2]
a2+b2
=
=a=右边a(a2+b2)
a2+b2
∴acos2θ+bsin2θ=a.