已知x=(√2+1)/(√2-1),y=(√2-1)/(√2+1),求x2-y2的值和y/x+x/y的值

问题描述:

已知x=(√2+1)/(√2-1),y=(√2-1)/(√2+1),求x2-y2的值和y/x+x/y的值

x=(根号2+1)^2/(2-1)=2+1+2根号2=3+2根号2
Y=(根号2-1)^2/(2-1)=2+1-2根号2=3-2根号2
x^2-y^2=(x+y)(x-y)=6*4根号2=24根号2
y/x+x/y=(x^2+y^2)/xy=[(x+y)^2-2xy]/xy=(x+y)^2/xy-2=6^2/(9-8)-2=34