如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且12a+5c=0. (1)求抛物线的解析式; (2)如果点P由点A开
问题描述:
如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且12a+5c=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
答
(1)据题意知:A(0,-2),B(2,-2)∵A点在抛物线上,∴c=-2∵12a+5c=0,∴a=56(1分)由AB=2知抛物线的对称轴为:x=1即:-b2a=1,b=-53∴抛物线的解析式为:y=56x2-53x-2.(3分)(2)①由图象知:PB=2-2t,BQ...