在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

问题描述:

在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为

45π×22
360
π
2

(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=
1
2
(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.
(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,
则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋转正方形OABC的过程中,p值无变化.
答案解析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
考试点:坐标与图形变化-旋转;全等三角形的判定;正方形的性质;扇形面积的计算.

知识点:本题用到的知识点是:扇形面积=
r2
360
,求一些线段的长度或角的度数,总要整理到已知线段的长度上或已知角的度数上.