如图,P是边长为1的正方形ABCD对角线AC上一点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:PE=PD;(2)PE⊥PD.

问题描述:

如图,P是边长为1的正方形ABCD对角线AC上一点(P与A、C不重合),点E在射线BC上,且PE=PB.

(1)求证:PE=PD;
(2)PE⊥PD.

证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.又∵PB=PE,∴B...
答案解析:(1)可通过构建全等三角形来求解.过点P作GF∥AB,分别交AD、BC于G、F,那么可通过证三角形GPD和EFP全等来求PD=PE以及PE⊥PD.在直角三角形AGP中,由于∠CAD=45°,因此三角形AGP是等腰直角三角形,那么AG=PG,而PB=PE,PF⊥BE,那么根据等腰三角形三线合一的特点可得出BF=FE=AG=PG,同理可得出两三角形的另一组对应边DG,PF相等,因此可得出两直角三角形全等.可得出PD=PE,
(2)由(1)可知:∠GDP=∠EPF,而∠GDP+∠GPD=90°,那么可得出∠GPD+∠EPF=90°,由此可得出PD⊥PE.
考试点:正方形的性质;全等三角形的判定与性质.
知识点:本题主要考查了正方形,矩形的性质,全等三角形的判定,通过构建全等三角形来得出相关的边和角相等是解题的关键.