如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BD于P点,点A在y轴上,点C、D在x轴上.(1)若BC=10,A(0,8),求点D的坐标;(2)若BC=132,AB+CD=34,求过B点的反比例函数的解析式;(3)如图,在PD上有一点Q,连接CQ,过P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,过F作FH⊥CQ交CQ于T,交PC于H,当Q在PD上运动时,(不与P、D重合),PQPH的值是否发生变化?若变化,求出变化范围;若不变,求出其值.

问题描述:

如图,在等腰梯形ABCD中,AB∥CD,对角线AC⊥BD于P点,点A在y轴上,点C、D在x轴上.

(1)若BC=10,A(0,8),求点D的坐标;
(2)若BC=13

2
,AB+CD=34,求过B点的反比例函数的解析式;
(3)如图,在PD上有一点Q,连接CQ,过P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,过F作FH⊥CQ交CQ于T,交PC于H,当Q在PD上运动时,(不与P、D重合),
PQ
PH
的值是否发生变化?若变化,求出变化范围;若不变,求出其值.

(1)在等腰梯形ABCD中,AD=BC=10
又∵A(0,8)
∴OA=8
∴OD=

10282
=6
∴D(-6,0)
(2)作BH⊥DE于H,过B点作BE∥AC交x轴于点E,
∵AB∥CE,BE∥AC,
∴ABEC是平行四边形,
∴AB=CE,BE=AC,
又∵ABCD为等腰梯形,
∴AC=BD,
∴BE=BD,
而AC⊥BD,AB∥CE,
∴∠DPC=∠DBE=90°,
∵BH⊥DE,
∴H为DE的中点,即BH为直角三角形DBE斜边DE上的中线,
∴BH=
1
2
DE=
1
2
(DC+CE)=
1
2
(DC+AB)=
1
2
×34=17
∵BC=13
2

∴CH=
BC2−BH2
=7
∴OH=AB=CE=HE-HC=17-7=10
∴B(10,17)
∴过B点的反比例函数的解析式为:
y=
170
x

(3)过点D作DN∥PC交PE的延长线于点M,交HF的延长线于点N,过点M作MI∥EF交BN于点I
易证四边形EFIM和四边形MNHP是平行四边形
∴MI=EF=DE,MN=PH
又∵∠EDM=∠IMN,∠DEM=∠EFI=∠MIN
∴△EDM≌△IMN
∴DM=MN
∵AC⊥BD,DN∥PC,
∴∠PDM=∠CPQ=90°,∠DPM=∠QCP=90°-∠SPC
由(2)知:∠BDC=45°,而∠DPC=90°,
∴PD=PC
∴△PDM≌△CPQ
∴DM=PQ=PH
PQ
PH
=1
答案解析:(1)根据等腰三角形的性质知:AD=BC,在Rt△AOD中,已知AD,OA的长,可将OD的长求出,从而可知点D的坐标;
(2)作辅助线,作BH⊥DE于H,过B点作BE∥AC交x轴于点E,则四边形ABEC为平行四边形,AB=CE,BE=AC,由AC⊥BD,可得:BD⊥BE,故在Rt△BDE中,由斜边DE的长可知:BH的长,在Rt△BHC中,运用勾股定理可将CH的长求出,进而可将OH的长求出,知点B的坐标,从而可求出求过B点的反比例函数的解析式;
(3)作辅助线,过点D作DN∥PC交PE的延长线于点M,交HF的延长线于点N,过点M作MI∥EF交BN于点I,易证四边形EFIM和四边形MNHP是平行四边形,从而可证:△EDM≌△IMN,DM=MN,进而可证:△PDM≌△CPQ,DM=PQ=PH,故:
PQ
PH
=1,为定值.
考试点:等腰梯形的性质;根据实际问题列反比例函数关系式;全等三角形的判定与性质;勾股定理.

知识点:本题综合考查等腰梯形的性质,反比例函数关系式的求法,全等三角形的判定和勾股定理等知识点的综合应用.