如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1)求证:BP=DP;(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.
如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.
(1) PE=PF 三角形PEC全等于PFC 所以 EC=FC 从而 DF=BF 进而得到直角三角形DPF全等于BPE 因此BP=DP;
(2) 不是 显然p点位于边BC上时 是不等的
(3) DF=BE
证明: 显然BC=DC CF=CE 又角DCF+角FCB=90°,角ECB+角BCF=90° (P点位于正方形外 时 略微不同 但角仍然相等)
所以 角DCF=角ECB
于是三角形BEC全等于三角形DFC
故 DF=BE
(1)证明:
证法一:在△ABP与△ADP中,
∵AB=AD∠BAC=∠DAC,AP=AP,
∴△ABP≌△ADP,
∴BP=DP.(2分)
证法二:利用正方形的轴对称性,可得BP=DP.(2分)
(2)不是总成立.(3分)
当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,
是当P点在AC的延长线上时,BP=DP,
说明:未用举反例的方法说理的不得分.
(3)连接BE、DF,则BE与DF始终相等,
,
在图1中,由正方形ABCD可证:
AC平分∠BCD,
∵PE⊥BC,PF⊥CD,
∴PE=PF,∠BCD=90°,
∴四边形PECF为正方形.(7分)
∴CE=CF,
∵∠DCF=∠BCE,
BC=CD,
∴△BEC≌△DFC,
∴BE=DF.(8分)
答案解析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;
(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;
(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.
考试点:旋转的性质;全等三角形的性质;全等三角形的判定.
知识点:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.