如图 边长为1的正方形ABCD中,P为对角线AC上任意一点,分别连接PB,PD,PE垂直PB,交CD于E.求证PE=PD.图就不画了,

问题描述:

如图 边长为1的正方形ABCD中,P为对角线AC上任意一点,分别连接PB,PD,PE垂直PB,交CD于E.求证PE=PD.图就不画了,

据题意先求得:△ABP≌△ADP.∠ABP=∠ADP.∴∠CDP=∠CBP.∵∠DEP=∠ACD(45°)+∠CPE.∠CBP=180°-∠BPC-∠BCP(45°),∵∠BPC=90°-∠CPE.∴∠CBP=180°-(90°-∠CPE)-45°=45°+∠CPE.∴∠DEP=∠CBP=∠CDP.∴PE=PD...