计算∫∫D(1/(4+x^2+y^2)dxdy),其中D是由曲线x^2+y^2

问题描述:

计算∫∫D(1/(4+x^2+y^2)dxdy),其中D是由曲线x^2+y^2

用极坐标啊
x=pcosa,y=psina
x^2+y^2p∈[0,2]
a∈[0,π/2]
∫∫(1/(4+x^2+y^2)dxdy
=∫[0,π/2] da∫[0,2](1/(4+p^2)*pdp
=a[0,π/2] *1/2ln(4+p^2)[0,2]
=π/2*1/2ln2
=π*ln2/4