计算对弧长的曲线积分∫y^2ds,其中C为右半单位圆周,答案是π/2,

问题描述:

计算对弧长的曲线积分∫y^2ds,其中C为右半单位圆周,答案是π/2,

计算对弧长的曲线积分∫y²ds,其中C为右半单位圆周
C:x=cost,y=sint;-π/2≦t≦π/2;dx/dt=-sint,dy/dt=cost;
[C]∫y²ds=[C]∫sin²t√[(dx/dt)²+(dy/dt)²]dt=[C]∫sin²t√(sin²t+cos²t)dt=[C]∫sin²tdt
=[(1/2)t-(1/4)sin2t]︱[-π/2,π/2]=(1/2)[(π/2)-(-π/2)]=π/2

C为右半单位圆周
化为参数方程
x=cost y=sint t∈[-π/2,π/2]
∫C y² ds=∫[-π/2,π/2] sin²t√[(dx/dt)²+(dy/dt)²] dt
=∫[-π/2,π/2] sin²t dt
=∫[-π/2,π/2] (1-cos2t)/2 dt
=t/2-(sin2t)/4 | [-π/2,π/2]
=π/2