如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.

问题描述:

如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.

设A(x1,y1)(x2,y2)
由于OD斜率为1/2,OD⊥AB
则AB斜率为-2,
故直线AB方程为2x+y-5=0……(1)
将(1)代入抛物线方程得
y^2+py-5p=0
则y1y2=-5p
因(y1)^2=2px1;(y2)^2=2px2
则(y1y2)^2=4(p^2)x1x2
故x1x2=25/4
因OA⊥OB
则x1x2+y1y2=0
p=5/4
很高兴为您解答,祝你学习进步!【the1900】团队为您答题.
有不明白的可以追问!如果您认可我的回答.
请点击下面的【选为满意回答】按钮,谢谢!