函数f(x)=Acos²wx+2(A>0,w>0)的最大值为6,其相邻两条对称轴之间的距离为4,则f(2)+f(4)+f(6).+f(100)=
问题描述:
函数f(x)=Acos²wx+2(A>0,w>0)的最大值为6,其相邻两条对称轴之间的距离为4,
则f(2)+f(4)+f(6).+f(100)=
答
f(x)=Acos²wx+2=1/2Acos2wx+1/2A+2
1/2A+1/2A+2=6
A=4
T=2*4=8
w=PI/8
f(x)=Acos²wx+2=2cosPI/4x+2
把f(2)+f(4)+f(6).+f(100代入可求