求到定点F(C,0)(C大于0)和它到定直线L:X=a/c距离之比是c/a,(c/a大于1)的点M的轨迹方程

问题描述:

求到定点F(C,0)(C大于0)和它到定直线L:X=a/c距离之比是c/a,(c/a大于1)的点M的轨迹方程

x^2/a^2+y^2/(a^2-c^2)=1 这是椭圆的第二定义

根据圆锥曲线的统一定义,可知,该曲线是双曲线.实轴长为2a,虚轴长为2b.焦距长为2c.