O为三角形ABC一点.且满足向量OA+向量OB+向量OC=.则点O为该三角形的什么心
问题描述:
O为三角形ABC一点.且满足向量OA+向量OB+向量OC=.则点O为该三角形的什么心
答
O为三角形ABC所在平面内一点,OA+OB+OC=0点O是三角形ABC的重心
(OA ,OB,OC,0为向量)
取BC中点D,连结并延长OD至E,使DE=OD,则四边形BOCE是平行四边形
∴向量OB=向量CE
∴向量OB+向量OC=向量CE+向量OC=向量OE
由向量OA+向量OB+向量OC=0得:向量OB+向量OC=-向量OA=向量AO
∴向量AO和向量OE共线===>A、O、E三点共线
而D在OE上,∴A、O、D三点共线
而点D又是BC中点,∴AD(即AO)是三角形ABC中BC边上的中线
同理可证BO是AC边上的中线,CO是AB边上的中线
∴点O是三角形ABC的重心.