如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系.

问题描述:

如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系.

∠BDC=90°-

1
2
∠A.
理由:∵BD、CD分别是∠CBE、∠BCF的平分线
∴∠DBC=
1
2
∠EBC,∠BCD=
1
2
∠BCF,
∵∠CBE、∠BCF是△ABC的两个外角
∴∠CBE+∠BCF=360°-(180°-∠A)=180°+∠A
∴∠DBC+∠BCD=
1
2
(∠EBC+∠BCF)=
1
2
(180°+∠A)=90°+
1
2
∠A,
在△DBC中∠BDC=180°-(∠DBC+∠BCD)=180°-(90°+
1
2
∠A)=90°-
1
2
∠A.