已知sinA是sin C和cosC的等差中项,sinB是sinC和cosC的等比中项,求证:2cos2A=cos2B.
问题描述:
已知sinA是sin C和cosC的等差中项,sinB是sinC和cosC的等比中项,求证:2cos2A=cos2B.
答
(sinC+cosC)/2=sinA;sinB/sinC=cosC/sinB;
顺序分析法:2cos2A=cos2B;
2(1-2sinA^2)=1-2sinB^2
2[1-2((sinC+cosC)/2)^2]=1-2sinB^2
2-(sinC^2+cosC^2+2sinC*cosC)=1-2sinC*cosC
1=1;
是正确的;
然后求证的时候逆推回去就好了