f(x)=sin(兀X/2+兀/6)-2sin^2 兀X/4
问题描述:
f(x)=sin(兀X/2+兀/6)-2sin^2 兀X/4
求最小正周期
答
f(x)=sin(πX/2+π/6)-2sin^2 πX/4
=sin(πX/2+π/6)+cos πX/2-1
=(√3/2)sinπX/2+(1/2)cos πX/2+cos πX/2-1
=(√3/2)sinπX/2+(3/2)cos πX/2-1
=√3[(1/2)sinπX/2+(√3/2)cos πX/2]-1
=√3sin(πX/2+π/3)-1
∴T=2π/(π/2)=4
最小正周期为4