三角形ABC所在平面内点O、P ,满足向量OP=向量OA+入(向量AB+向量AC),则P的轨迹一定经过三角形ABC的 心
问题描述:
三角形ABC所在平面内点O、P ,满足向量OP=向量OA+入(向量AB+向量AC),则P的轨迹一定经过三角形ABC的 心
答
将式子变换得到向量AP=入(向量AB+向量AC), 又向量AB+向量AC得到的是角CAB的平分线 可知AP平行于其角平分线 那么一定经过其内心
答
OP=OA+λ(AB+AC)
OP-OA = λ(AB+AC)
AP=λ(AB+AC)
AB+AC过三角形ABC重心
P的轨迹过三角形ABC重心